
Лабораторная работа 9 

Анализ Фишинга моделями глубокого обучения 

Дан датасет Фишинга 

https://www.kaggle.com/datasets/taruntiwarihp/phishing-site-urls 

Разработать и протестировать модели глубокого обучения для классификации фишинга на 

основе датасета. Провести сравнительный анализ различных алгоритмов. 

Этапы выполнения 

1. Подготовка данных 

1. Загрузка данных 

o Скачать датасет с Kaggle и загрузить в среду разработки (Google Colab, 

Jupyter Notebook, PyCharm). 

o Использовать pandas и numpy для работы с данными. 

2. Анализ данных 

o Определить целевую переменную (метка фишинговый сайт / безопасный 

сайт). 

o Проверить баланс классов (value_counts()). 

o Изучить текстовые признаки (например, URL, доменное имя, параметры за-

проса). 

o Проверить наличие пропущенных значений (df.isnull().sum()). 

3. Предобработка данных 

o Заполнить или удалить пропущенные значения. 

o Очистить текстовые данные (удаление специальных символов, нормализа-

ция). 

o Преобразовать текст в числовой формат (TF-IDF, Word2Vec, FastText, 

CountVectorizer). 

o Разделить данные на обучающую и тестовую выборки (train_test_split). 

o Преобразовать данные в формат, подходящий для нейросетей (reshape, 

to_categorical для целевой переменной). 

2. Обучение нейронных сетей 

Обучить и протестировать три типа нейронных сетей: 

2.1 Полносвязная нейронная сеть (Dense Neural Network, DNN) 

Архитектура: 

• Входной слой (Input Layer). 

• Несколько скрытых слоев с Dense и ReLU. 

• Dropout (для предотвращения переобучения). 

• Выходной слой с sigmoid (если бинарная классификация) или softmax (если много-

классовая). 

Библиотеки: 

https://www.kaggle.com/datasets/taruntiwarihp/phishing-site-urls


• TensorFlow/Keras 

• Dense из tf.keras.layers 

Гиперпараметры для настройки: 

• Количество слоев и нейронов. 

• learning_rate (оптимизатор Adam). 

• batch_size, epochs. 

2.2 Сверточная нейронная сеть (Convolutional Neural Network, CNN) 

Архитектура: 

• Входной слой (Input Layer), преобразующий данные в 2D-матрицу. 

• Embedding слой для представления символов и слов в векторном виде. 

• Conv1D слои для обработки текстовой информации. 

• BatchNormalization и ReLU для улучшения сходимости. 

• MaxPooling1D для снижения размерности. 

• Flatten и Dense для классификации. 

Библиотеки: 

• Embedding, Conv1D, MaxPooling1D, Flatten, Dense из tf.keras.layers. 

Гиперпараметры: 

• Количество фильтров и размер ядра в Conv1D. 

• Размерность MaxPooling1D. 

• Количество Dense-слоев. 

2.3 Рекуррентная нейронная сеть (Recurrent Neural Network, RNN) 

Архитектура: 

• Embedding слой для представления слов в виде плотных векторов. 

• LSTM или GRU слой для обработки последовательности символов URL-адреса. 

• Dropout и BatchNormalization для регуляризации. 

• Dense слой для классификации. 

Библиотеки: 

• Embedding, LSTM, GRU из tf.keras.layers. 

Гиперпараметры: 

• Количество LSTM-нейронов. 

• Количество слоев LSTM. 

• Размер batch_size. 

3. Оценка моделей 

1. Метрики качества 



o accuracy 

o precision 

o recall 

o F1-score 

o ROC-AUC 

2. Кросс-валидация 

o Использование KFold или StratifiedKFold. 

3. Визуализация обучения 

o Графики loss и accuracy по эпохам. 

4. Анализ и выводы 

1. Сравнить результаты всех моделей: 

o Какая архитектура работает лучше? 

o Время обучения каждой модели. 

o Как обработка входных данных влияет на результат? 

2. Сделать выводы о применимости нейросетевых моделей к задаче классификации 

фишинговых сайтов. 

5. Требования к отчету 

1. Код с комментариями. 

2. Графики и таблицы с результатами. 

3. Описание результатов и выводы. 

 


